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The conference was organized by C. Dafermos (Providence), D. Kröner (Freiburg) and
R. LeVeque (Seattle). It was joined by forty-eight participants from ten countries (Ger-
many:16, USA:13, France:6, Norway:4, Italy:3, Brazil:2, Greece, Spain, Sweden, Israel:1).
The main purpose of the conference was to bring together different research groups working on
theoretical and numerical aspects of conservation laws. In eighteen main lectures during the
morning sessions important new results have been presented. Progress has been obtained in
many fields of research such as uniqueness and stability issues, diffusive, diffusive-dispersive,
relaxation, and kinetic approximations, multifluids, problems with (stiff) source terms, dis-
crete shocks, stability of boundary layers, and degenerate problems.
During accompanying discussions, as well as in short contributions in the afternoons, specific
topics such as magnetohydrodynamics, elastodynamics, nonclassical shocks and multiscale
approximations have been discussed in more detail.
Two spontaneous problem sessions initiated inspiring discussions on open problems for con-
servation laws and in particular on the difficulties and new developments for problems with
source terms.
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Abstracts

Semi-discrete shocks

Sylvie Benzoni-Gavage

Abstract: The existence of stable discrete shocks is a basic issue in the numerical analysis
of hyperbolic systems of conservation laws. Despite many efforts, no general enough result is
available though. The known results assume that the discrete shock speed is either a rational
number (Majda & Ralston, 1979) or a Diophantine number (Liu & Yu, 1999). Motivated
by a work of Chow, Mallet-Paret and Shen (1998), we have chosen to focus on semi-discrete
shocks. The existence of such stable traveling waves would indeed imply the existence of
fully discrete shocks, no matter the nature of their speed. The existence of semi-discrete
shocks of small strength can be dealt with by a center manifold argument. For the special
“upwind” scheme, the center manifold theorem referred to is available in the delay differential
equations theory. For more general schemes, we must prove a center manifold theorem for
a differential equation with both delay and advance. This has been done for dissipative and
“non-resonant” schemes by P. Huot in his thesis. The stability of small strength semi-discrete
shocks can be tackled by a standard energy method (“a la Goodman”). The main purpose of
the talk is to introduce a tool encoding the linearized stability of possibly large semi-discrete
shocks. This tool is an Evans function of mixed type. It is obtained for the “upwind” scheme
by reformulating the eigenvalue equations of a retarded differential operator as a(n infinite
dimensional) “dynamical system”. The mixed type refers to the use of the adjoint dynamical
system in the definition of the Evans function, which relies on the fact that the unstable
manifold of a delay differential equation is finite dimensional. The (infinite dimensional)
adjoint “dynamical system” is highly non-standard. However, it can (easily) be related to the
eigenvalue equations of the adjoint operator, which is nothing but an advanced differential
operator. Eventually, the stability condition that we obtain for semi-discrete shocks is the
same as for viscous shocks associated with the numerical viscosity matrix. Furthermore, the
low-frequency behaviour of our Evans function is certainly related to the spectral requirement
in Chow, Mallet-Paret and Shen.

Entropy satisfying flux vector splittings and kinetic BGK models

Francois Bouchut

We establish forward and backward relations between entropy satisfying BGK models
such as those introduced previously by the author and the first order flux vector splitting
numerical methods for systems of conservation laws. Classically, to a kinetic BGK model that
is compatible with some family of entropies we can associate an entropy flux vector splitting.
We prove that the converse is true: any entropy flux vector splitting can be interpreted by
a kinetic model, and we obtain an explicit characterization of entropy satisfying flux vector
splitting schemes. We deduce a new proof of discrete entropy inequalities under a sharp CFL
condition that generalizes the monotonicity criterion in the scalar case. In particular, this
gives a stability condition for numerical kinetic methods with noncompact velocity support.
A new interpretation of general kinetic schemes is also provided via approximate Riemann
solvers. We deduce the construction of finite velocity relaxation systems for gas dynamics.
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Viscous approximations of hyperbolic systems of
conservation laws

Alberto Bressan

For a strictly hyperbolic system of conservation laws, recent work has established the
uniqueness and stability of entropy weak solutions of the Cauchy problem with small BV data.
A natural conjecture is that such solutions are precisely the unique limits of vanishing viscosity
approximations. Toward a proof of this result, the key ingredient is an a priori estimate of
the total variation of viscous approximations. Our research (together with S. Bianchini) has
shown that the new oscillations produced by interactions of viscous waves of different families,
as well as those produced by interactions of waves of the same family, can all be estimated in
terms of some new Lyapunov functionals. These replace the classical Glimm wave interaction
functional in the presence of viscosity. We thus obtain global BV bounds and convergence of
vanishing viscosity approximations for various classes of hyperbolic systems.

On the self-similar solutions of 2-D Riemann problems for hyperbolic
conservation laws

Suncica Canic

This talk reports on the recent results related to the study of the existence and prop-
erties of self-similar solutions (solution spaces, singularities, structure) to multi-dimensional
conservation laws, obtained jointly with Barbara Lee Keyfitz. We have focused on the study
of two-dimensional problems and closely examined wave interactions arising in weak shock
reflection by a wedge.

We found that for a wide class of two-dimensional conservation laws (including many
standard equations of compressible flow [7]) the theory for self-similar solutions of Riemann
problems divides naturally into two parts: supersonic and subsonic. The supersonic theory can
be completed by generalizations of one-dimensional results (see, for example [6]); the subsonic
theory involves solving free-boundary problems for degenerate elliptic equations or equations
of mixed type. Our preliminary analysis of the subsonic part of the problem, coupled with
the numerical simulations obtained in [8], indicates new features in the solution: hyperbolic
“bubbles” imbedded in the subsonic region, and the formation of possible singularities not
occurring in one-dimensional problems.

We have recently developed techniques for analyzing the subsonic part of the solution in
transonic shock interactions modeled by the transonic small disturbance equation, the steady
(with Gary Lieberman, [1]) and the unsteady case (with Eun Heui Kim, [2, 3, 4]). The
unsteady transonic small disturbance equation has been used as a model for a benchmark
problem in two-dimensional shock interactions: the weak shock reflection by a wedge. Our
results provide a complete description of the solution in the case of regular reflection. Irregular
reflection (Mach reflection and von Neumann reflection) is under consideration. The crucial
part in the analysis is the formulation of the problem as a free-boundary problem for the
position of a transonic shock: the Rankine-Hugoniot conditions should be written as a shock
evolution condition coupled with the condition describing mass flow across the shock (oblique
derivative boundary condition). The main ideas in the proof use compactness arguments
which are based on the a priori bounds on the solution (provided by the supsersonic part
of the solution and the far-field estimates) and on the regularity estimates which use, in a
crucial way, the information obtained from the mass flow through the transonic shock. A

3



generalization of these ideas to a class of shock evolution problems, using the results recently
obtained in [5], is under way.
Partial list of the related references which can be obtained from
www.math.uh.edu/˜canic:
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Uniqueness and stability of Riemann solutions in gas dynamics

Gui-Qiang Chen

We prove the uniqueness of Riemann solutions in the class of entropy solutions in L∞ ∩
BVloc with arbitrarily large oscillation for the 3X3 system of Euler equations in gas dynamics.
Our proof for solutions with large oscillation is based on a detailed analysis of the global
behavior of shock curves in the phase space and the singularity of centered rarefaction waves
near the center in the physical plane. The uniqueness of Riemann solutions yields their inviscid
large-time stability under arbitrarily large L1∩L∞∩BVloc perturbation of the Riemann initial
data, as long as the corresponding solutions are in L∞ and have local bounded total variation
satisfying a natural condition on its growth with time. No specific reference to any particular
method for constructing the entropy solutions is made. Our uniqueness result for Riemann
solutions can be easily extended to entropy solutions U(x, t), piecewise Lipschitz in x, for any
t > 0, with arbitrarily large oscillation. (Joint work with H. Frid and Y. Li).
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Challenges in (astrophysical) MHD simulations

Andreas Dedner

Most numerical schemes for the equations of magnetohydrodynamics (MHD) have been
developed for the case of an ideal gas. In many applications (e.g. solar physics) this sim-
plification is too far from reality. Therefore these numerical schemes have to be extended to
cope with a more general equation of state (EOS). For the Euler equations of gas dynamics
two general approaches for such an extension have been proposed recently, which we have
extended to MHD. We have compared different techniques of building a second order scheme
using piecewise linear reconstruction. Some problems arise from the use of a tabularized EOS,
which may become necessary to reduce the computational cost if the evaluation of the EOS
is expensive. We suggest the use of an adaptive, hierarchical table. This is joint work with
M. Wesenberg.

A serious problem in MHD simulations (independent of the EOS) arises due to the fact
that the constraint ∇ · ~B = 0 cannot be guaranteed by a numerical scheme. Even if the
numerical simulation is started with a solenoidal magnetic field, the numerical approximations
lead to errors, which can accumulate in time. This may result in totally unphysical solutions
or even a breakdown of the simulation. Two different approaches are often used for the
stabilization of the numerical schemes. We suggest a different approach which avoids some
of the disadvantages of the other methods. Most importantly, this method is conservative
and does not introduce an infinite wave speed. This is joint work with F. Kemm, D. Kröner,
C.–D. Munz, T. Schnitzer, M. Wesenberg.

Asymptotic stability of viscous shock waves
near states of non-convexity or non-strict hyperbolicity

Heinrich Freistühler, Christian Fries

We consider a hyperbolic-viscous system of conservation laws

ut + f(u)x = µuxx,

and solutions u(x, t) = φ(x − st) that represent viscous shock waves connecting two nearby
states u−, u+. I. e., φ : R → Rn solves

µφ′ = f(φ)− sφ− q, φ(±∞) = u±,

where u−, u+, q ∈ Rn, s ∈ R satisfy f(u−)− su− = f(u+)− su+ = q and

|u+ − u−| << 1.

The shock waves we are interested in are Laxian or overcompressive, i. e., the characteristic
speeds λ1 ≤ . . . ≤ λn (= eigenvalues of f ′) at u−, u+ satisfy

λi(u±) < s for 1 ≤ i < n1,
λi(u−) > s > λi(u+) for n1 ≤ i ≤ n2,

λi(u±) > s for n2 < i ≤ n,

with some n1 ≤ n2. We prove the stability, for t →∞, of these traveling wave solutions under
further natural assumptions.
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The result applies to systems with generic rotational equivariance, such as nonlinear elas-
todynamics, electromagnetism, or magnetofluiddynamics (with “artificial” viscosity). The
“full” versions of these systems (plane waves in several space dimensions) have states of non-
strict hyperbolicity, while for the corresponding “coplanar” subsystems, the same states are
points of (strict hyperbolicity but) non-convexity. The result means the stability of small
“non-classical” shocks near these points.

Decay of solutions of conservation laws,
decay of almost periodic solutions of conservation laws

Hermano Frid

We consider the asymptotic behavior of solutions of systems of inviscid or viscous conser-
vation laws in one or several space variables, which are almost periodic in the space variables
in a generalized sense introduced by W. Stepanoff and Wiener, which extends the original
one of H. Bohr. We prove that if u(x, t) is such a solution whose inclusion intervals at time
t, with respect to ε > 0, satisfy lε(t)/t → 0 as t → ∞, and so that the scaling sequence
uT (x, t) = u(Tx, T t) in pre-compact as T →∞ in L1

loc(R
d+1
+ ) then u(x, t) decays to its mean

value ū, which is independent of t, as t → ∞. The decay considered here is in L1
loc of the

variable ξ = x/t, which implies, as we show, that Mx(|u(x, t)− ū|) → 0, as t →∞, where Mx

denotes taking the mean value with respect to x. In many cases we show
that the solutions are almost periodic in the generalized sense if the initial data are. We

also show, in these cases, how to reduce the condition on the growth of the inclusion intervals
lε(t) with t, as t → ∞, for fixed ε > 0, to a condition on the growth of lε(0) with ε, as
ε → 0, which amounts to impose restrictions only on the initial data. We show with a simple
example the existence of almost periodic (non-periodic) functions whose inclusion intervals
satisfy any prescribed growth condition as ε → 0. The applications given here include inviscid
and viscous scalar conservation laws in several space variables, some inviscid systems from
gas dynamics and chromatography, and many viscous 2×2 systems such as those of nonlinear
elasticity and Eulerian isentropic gas dynamics, with artificial viscosity, among others. In the
case of inviscid scalar equations, the class of initial data for which decay results are proved
includes, in particular, all the L∞ generalized limit periodic functions. Our procedures can
be easily adapted to provide similar results for semilinear and kinetic relaxations of systems
of conservation laws.

Shallow water with topography

Thierry Gallouet

In my talk, I present a way to take into account some source terms in hyperbolic systems
of conservation laws. The main objective is to obtain a convergent scheme (as space and
time steps go to 0) which gives also ”satisfying approximate solutions” for large space and
time steps (for instance, which ”maintain steady states”) and which is ”reasonnable” for
the computational point of view. This is achieved with a finite volumes scheme which take
into account source terms on the interfaces on the mesh. The source terms appear in an
approximate Riemann solver on each interface. Some examples are given in the case of shallow
water with topography, including convergence (as time goes to infinity) towards steady states
and vacuum occurence.
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Numerical approximation of conservation laws with stiff source term
for the modelling of detonation waves

Christiane Helzel

The approximation of detonation waves may lead to numerical difficulties, which are
caused by different time and space scales that arise in the model equations. The chemical
reactions are often very rapid compared to the gas transport. In a numerical simulation one
usually has to take these different scales into consideration, even if one is only interested in
the global solution structure and not in a detailed description of the processes inside the very
thin reaction zone. In this talk, a modified fractional step scheme was described, which allows
the approximation of detonation waves without resolving the reaction zone. This numerical
scheme uses the structure of the Riemann problem, which arises in the discretization, in order
to determine where burning should arise in each time step.

Furthermore, the resolved approximation of detonation waves was considered. On struc-
tured grids a crossflow instability can arise in numerical simulations. The mechanism which
leads to this numerical instability in the approximation of detonation waves was described.
The crossflow instability can be avoided by a simple change of the Riemann solver.

This is a joint work with Randall J. LeVeque, Derek S. Bale, and Gerald Warnecke.

Operator splitting - theory and applications

Helge Holden

In this talked we consider operator splitting, also known as the fractional steps method, for
constructing physically relevant (entropy weak) solutions of the Cauchy problem for scalar and
weakly coupled systems of nonlinear mixed hyperbolic-parabolic partial differential equations.
The class of equations is rich, and contains, for instance, scalar conservation laws, heat
equations, porous medium equations, two-phase reservoir flow equations, as well as some
strongly degenerate convection-diffusion equations with applications to sedimentation. We
first present an abstract ‘Kružkov type’ convergence theory for product formulas. This theory
includes and improves previous convergence results for problem specific splitting methods.
Applications to flow in porous media and sedimentation were presented. This is joint work
with K. H. Karlsen (Bergen), K-A Lie (Oslo), and N. H. Risebro (Oslo)

The random projection method for hyperbolic conservation laws
with stiff reaction terms

Shi Jin

Hyperbolic systems with source terms arise in the modeling of chemically reacting flows.
In these problems, the chemical time scale may be orders of magnitude faster than the fluid
dynamical time scales, making the problem numerically stiff. The numerical difficulty of this
problem is classical – one always gets the wrong shock speed unless one fully resolves the small
chemical scale numerically. We introduce a novel numerical method – the random projection
method– that is able to capture the correct shock speed without resolving the small scale.
The idea is to replace the ignition temperature by a uniformly distributed random variable
in a suitable domain. The statistical average of this method corrects the spurious shock
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speed, as will be proved with a scalar model problem and demonstrated by a wide range of
numerical examples in inviscid denotation waves in both one and two space dimensions, and
for multi-species reactions.

Continuous dependence estimates for viscosity solutions
of fully nonlinear degenerate parabolic equations

Kenneth Hvistendahl Karlsen

Using the maximum principle for semicontinuous functions (Crandall, Ishii, Lions), we
establish here an explicit “continuous dependence on the nonlinearities” estimate for viscosity
solutions of fully nonlinear degenerate parabolic equations with time and space dependent
nonlinearities. Our result generalizes a result by Souganidis for first order Hamilton-Jacobi
equations and a recent result by Cockburn, Gripenperg, and Londen for a class of degenerate
parabolic second order equations. We apply our result to the Hamilton-Jacobi-Bellman partial
differential equation associated with optimal control of a degenerate diffusion process over a
finite horizon. Without appealing to probabilistic arguments, we then obtain the following
two results: (i) An explicit rate of convergence for the corresponding vanishing viscosity
method. (ii) An explicit estimate of the continuity of the value function (viscosity solution)
with respect to the coefficients in the Hamilton-Jacobi-Bellman equation. We also use the
basic result to derive an explicit rate of convergence for certain numerical approximations.
This is joint work with Espen Jakobsen.

A single fluid algorithm for multifluids

Smadar Karni

The main difficulty in extending state-of-the-art single fluid algorithms to multifluid flows
is building into the numerical method the ability to recognize and respect pressure equilibrium
between fluid components. Failing to do so results in unphysical pressure oscillations near
interfaces, and consequently lead to false interface dynamics. An added obstacle is the known
fact that fully conservative schemes cannot preserve pressure equilibrium. Hence multifluid
algorithms often give up strict conservation in favour of good control over the pressure field.

Recent years have seen a growing interest in developing suitable methods for computing
multifluid dynamics. Among those are methods that have a single-fluid ’flavour’, which
capitalize on the fact that pressure oscillations do not arise in single-fluid flows, the internal
energy correction algorithm (Jenny et al. JCP, 132:91-107, 1997) and the Ghost-Fluid-Method
(Fedkiw et al., JCP, 152:457-492, 1999). Recognizing the advantage of single-fluid approaches,
this talk presents an extremely simple algorithm for multifluids, based on computing two
different flux functions across material fronts: one assuming that both fluids on either side
are of type A, say, and the other assuming they were both of type B. The algorithm provides
a general framework for discretization by any numerical method. It conserves total mass
and momentum and essentially conserves total energy in the sense that conservation errors,
while extremely small on standard grids (on the order of a fraction of a percent), further
decay to zero with mesh refinement. Results are presented of shock-interface interactions,
and interfacial instabilities involving ideal and stiff fluids.
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Singular shocks in nonhyperbolic models for incompressible two-phase flow

Barbary Keyfitz

Many models for multi-fluid flow result in equations which fail to be hyperbolic. In the
simplest model for incompressible flow (given in the text of Drew and Passman, for example),
the principal part of the differential operator has characteristics with nonzero imaginary part
for any state of the fluid which contains both phases. That is, the linearized equations are
catastrophically unstable at every point.

This linear instability has caused great distrust of the model equations and concern about
the modeling processes from which they are derived.

However, the nonlinear equations which form the model behave very differently from their
linearizations. Although states which are linearly unstable are also unstable in the nonlinear
equations, nonlinear theory predicts jump transitions, via stable shocks, from unstable to
stable states. Furthermore, the nonlinear theory eliminates both infinite growth modes and
high-frequency oscillations. The solution depends continuously on the data except at certain
values where threshold or bifurcation phenomena occur.

Some of the shock transitions are of a novel type, singular shocks, first found in work of
Keyfitz and Kranzer. Singular shocks can be described by means of approximations, using
self-similar or regular viscosity. In the limit of zero viscosity, they are weighted measures;
however, the sense in which they satisfy the equation, in the limit, is not well-understood.

The interpretation of the solutions in the incompressible flow equations, however, appears
reasonable, and computations also appear consistent with these solutions.

Computing Euler flow at high Mach numbers

Christian Klingenberg

When doing hydrodynamic simulations there are situations (for example the hydrody-
namic simulation of protostellar jets in astrophysics) where the velocities are extremely high
and pressure very low. Experience shows that standard numerical schemes fail to compute
internal variables (like temperature and pressure) with the desired accuracy. We propose a
relaxation approach which remedies this problem. This scheme satisfies the discrete entropy
inequality, and thus guarantees positive pressure.

This is joint work with Frederic Coquel.

Local error analysis and adaptive semi-discrete central schemes
for hyperbolic conservation laws

Alexander Kurganov

We consider systems of one-dimensional hyperbolic conservation laws subject to compactly
supported (or periodic) initial data. Since typical solutions of nonlinear conservation laws are
nonsmooth, standard methods of truncation error analysis, based on the Taylor expansions,
are invalid.

We propose a new method for practical measurement of the local Lip’ truncation errors by
using a basis of locally supported test-functions. Our particular choice of such test-functions
is the localized quadratic B-splines. A global, compactly supported test-function may then
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be approximated by means of the local test-functions, and thus, in the scalar convex case the
global Lip’ truncation error can be obtained from the local ones.

In the case of a system of conservation laws, no rigorous error estimates can be obtained.
However, one may still compute the local Lip’ truncation error. Moreover, our numerical
experiments demonstrate a remarkably similar behavior of the local truncation error and the
actual error. This suggests that even in the system case, the local truncation error may serve
as a reliable error indicator.

This is the key idea in developing adaptive semi-discrete schemes. The difference of several
orders of magnitude in the local truncation errors between smooth and nonsmooth regions
provides an effective tool for identifying nonsmooth parts of the solution. This is utilized in
the scheme- and mesh-adaption algorithms.

L1-continuous dependence property for systems of conservation laws

Philippe G. LeFloch

We are concerned with the uniqueness and L1 continuous dependence of entropy solutions
for nonlinear hyperbolic systems of conservation laws. On one hand, we study a class of linear
hyperbolic systems with discontinuous coefficients: Each propagating shock wave may be a
Lax shock, or a slow or fast undercompressive shock, or else a rarefaction shock. We establish
the L1 continuous dependence of solutions upon their initial data in the case that the system
does not contain rarefaction shocks. In the general case our estimate takes into account
the total strength of rarefaction shocks. In the proof, a new time-decreasing, weighted L1

functional is obtained via a step-by-step algorithm.
To treat nonlinear systems, we introduce the concept of admissible averaging matrices

which are proven to exist for solutions with small amplitude of genuinely nonlinear systems.
Interestingly, for many systems of continuum mechanics, they also exist for solutions with
arbitrary large amplitude. The key point is that an admissible averaging matrix does not
exhibit rarefaction shocks. As a consequence, the L1 continuous dependence estimate for
linear systems can be extended to nonlinear hyperbolic systems.

Quasi-steady methods for hyperbolic equations with source terms

Randall J. LeVeque

Conservation laws with source terms often have steady states in which the flux gradients
are nonzero but exactly balanced by source terms. Many numerical methods (e.g., fractional
step methods) have difficulty preserving such steady states and cannot accurately calculate
small perturbations of such states. I discussed an approach to this problem based on intro-
ducing a Riemann problem in the center of each grid cell whose flux difference exactly cancels
the source term. This leads to modified Riemann problems at the cell edges in which the
jump now corresponds to perturbations from the steady state. A similar idea may also be
useful for quasi-steady problems with spatially-varying flux functions.
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Kinetic formulation of entropic schemes for scalar conservations laws

Charalampos Makridakis

A kinetic formulation of the wider known class of entropic schemes, the E-schemes, is
considered. Based on this formulation one is able to derive many properties of the E schemes
and to prove convergence using the Kinetic formulation of the conservation law. In particular,
in the one dimensional case, using this formulation one can give a new proof of the local
entropy inequalities but under improved and more natural CFL conditions. In addition several
properties, e.g., as the weak BV bound for finite volume schemes are now easily proved.
This is joint work with B. Perthame, ENS, Paris.

Conservation laws with source terms and applications

Dan Marchesin

Systems of conservation laws can be generalized to deal with mass and energy transfer in
thin zones where there are chemical reactions or phase changes. In such thin zones (which
are shocks), diffusion and source terms become important: they are O(1) in L1

loc and their
balance determines the internal structure of the shock.

We show applications of such concepts to multiphase flow in porous media in one spatial
dimension, for the case of steam injection and fireflood, where there are condensation fronts
and combustion waves.

Conservative versus non conservative models for multimaterial
compressible flows: real gas flow applications

Antonio Marquina

We formulate two models: The mass fraction model and the level set model, as proto-
types of conservative and non conservative models, respectively. We use a Riemann solver
introduced by the author as the more consistent solver for the two-component fluid flow. We
will explain the “Ghost Fluid Method”, recently developed to improve the level set model.
Concerning the boundary/interface condition, we consider the general class of material inter-
face problems where numerical methods can predict pressure and velocity adequately, but fail
in their predictions of density and temperature. Motivated by total variation considerations
and physical assumptions, we have developed a simple but general boundary condition for
this class of problems. This new boundary condition does not change the pressure or the
velocity, but does change the density and the temperature in a fashion consistent with the
equation of state resulting in new values that minimize a specific measure of variation at
the boundary. We perform different 1D and 2D experiments using high order accurate shock
capturing schemes. We compare the behavior of both models, remarking the advantages and
disadvantages.
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Large asymptotic expansions and numerical methods for low Mach number
Euler- and Navier-Stokes-equations

Andreas Meister

The results of the asymptotic analysis of the Euler and Navier-Stokes equations are em-
ployed to extend the validity of compressible flow solvers to the low mach numbe regime.
In particular, we consider two different approaches. One possibility is the use of a flux-
correction-approach which means that the fluxes computed by a standard or slightly modified
Riemann-solver are corrected by means of the results of the asymptotic analysis. Further-
more, we present a preconditioning technique, whereby the preconditioner is only introduced
within the numerical dissipation of a compressible Riemann-solver in order to enable the use
of the numerical method for the simulation of steady as well as unsteady flow fields. A dis-
crete asymptotic analysis is employed in order to prove the validity of the developed numerical
method in the low mach number regime. Numerical results are presented for both approaches.

Adaptive finite volume methods based on local multiscale decompositions

Siegfried Müller

A new approach is presented by which any standard Finite Volume Method (FVM) can
be accelerated. The basic idea is to incorporate data compression strategies based on wavelet
techniques which has been originally suggested by A. Harten.

Starting point is a so-called multiscale decomposition corresponding to a sequence of
nested grids which is determined by the discrete flow field at hand. To this end, a sequence
of mean values corresponding to a finest resolution level is decomposed into to an equivalent
sequence of mean values on a coarsest resolution level and details describing the difference of
the solution on two successive resolution levels. Since the details may become negligible small
in regions where the flow field exhibits a moderate variation in the data, the complexity of the
data can be reduced applying hard thresholding techniques to the multiscale decomposition.
By means of the truncated sequence of multiscale coefficients a locally adapted grid with
hanging nodes is predicted on which the time evolution is performed.

In collaboration with A. Cohen and his team it has been recently verified analytically that
the threshold error introduced in each time step can be controlled, i.e., the error does not
blow up over all time steps, provided the threshold value is judiciously chosen. This result
implies that the accuracy of the reference FVM is preserved.

Moreover, numerical computations show that the resulting adaptive FVM is much more
efficient than the reference FVM. In particular, the gain in computational time as well as
the reduction of memory requirements are improved with an increasing number of refinement
levels. This is different to Harten’s original concept which is only aiming at the reduction of
expensive numerical flux computations, i.e., the complexity of the scheme still corresponds to
that of the finest resolution level. This is different for the new approach where the complexity
is proportional to the number of significant details.
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Convergence of diffusive BGK approximations for
nonlinear strongly parabolic systems

Roberto Natalini

We study a class of BGK approximations of parabolic systems in one space dimension.
We prove stability and existence of global solutions for these models. Moreover, under cer-
tain conditions, we prove a rigorous result of convergence toward the formal limit, by using
compensated compactness techniques. Starting from these results it is possible to design nu-
merical schemes for nonlinear degenerate parabolic systems. General stability conditions are
derived, and for scalar equations convergence is proved. These methods may be also adapted
to unstructured meshes. This is joint work with Corrado Lattanzio.

The MoT-ICE: a new multi-dimensional wave-propagation-algorithm
based on Fey’s Method of Transport

Sebastian Noelle

The numerical solution of systems of hyperbolic conservation laws is dominated by Riemann-
solver based schemes, which are usually extended to several space-dimensions either by using
dimensional splitting on cartesian grids or by the finite-volume approach on unstructured
grids. One disadvantage of these schemes is that the Riemann-solver is applied in the grid-
rather than the flow-direction, which may lead to grid orientation effects and cross-flow in-
stabilities.

In this contribution we focus on an alternative, genuinely multi-dimensional approach,
Fey’s Method of Transport (MoT) [1], which belongs to the family of flux-vector-splitting
schemes. The starting point of such schemes is a multi-dimensional wave-model, which leads
to a reformulation of the system of conservation laws as a finite set of coupled nonlinear
advection equations. This decoupling may be justified from gas kinetic theory.

Many upwind schemes are inconsistent at sonic points, and so is the first-order version
of Fey’s method. Here we develop a new version of the MoT based on Interface-Centered-
Evolution, the MoT-ICE [2]. The new method draws ideas from the flux-vector-splitting
and the flux-difference-splitting approaches: the multi-dimensional wave-models are inherited
from Fey’s Method of Transport or other flux-vector-splitting schemes, while a predictor-step
which provides auxiliary transport-velocities on the cell-interfaces uses flux-difference-splitting
techniques.

For the new method, we prove uniform first- resp. second-order consistency, including at
sonic points. Numerical experiments confirm second-order-accuracy for smooth solutions and
high-resolution nonoscillatory shock-capturing properties for discontinuous solutions. The
second-order version of the new MoT-ICE is several times faster than Fey’s second-order
scheme and seems to be as fast as standard second-order algorithms.

In [3], the MoT-ICE has been extended to adaptive cartesian grids and the equations of
magneto-hydrodynamics (MHD).

Besides reporting this progress, we also discuss open questions, drawbacks and possible
improvements of the MoT, among them the cumbersome computation of the correction coef-
ficients for the decomposition error, the large dissipation in the linear fields, and instabilities
for some multi-d MHD calculations.
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A posteriori error estimates for implicit vertex centered finite volume
approximations of nonlinear convection-diffusion-reaction equations

Mario Ohlberger

This talk is devoted to the study of a posteriori error estimates for a scalar nonlinear
convection-diffusion-reaction equation in two space dimensions. The estimates for the error
between the exact solution and an implicite vertex centered upwind finite volume approxima-
tion to the solution are derived in the L1-norm, independent of the diffusion coefficient. The
resulting a posteriori error estimate is used to define an grid adaptive solution algorithm for
the finite volume scheme. Finally numerical experiments underline the applicability of the
theoretical results.

A survey of the kinetic approach to conservation laws

Benoit Perthame

The shallow water description through the Saint-Venant system is usual for many applica-
tions (rivers flow, tidal waves, but also narrow tubes). This is a hyperbolic system, relatively
simple, that, however, contains a source term describing the bottom topography. Classical
finite volumes schemes give a very low accuracy on such a system, especially because they
do not preserve the steady states. This question has been considered by many authors who
modified the Roe or Godunov solvers (Leroux et al, Gallouet et al, Jin, Leveque).

In this talk we will give two progresses on the Saint-Venant system. First, we will show
how a derivation from Navier-Stokes (and not Euler) equations allow to justify the friction
term, the viscosity terms and the Bousinesq coefficients. Second, we will show how the kinetic
approach allows a sipmle understanding of stiff topography and to derive a kinetic solver for
finite volumes methods.

Weakly non-oscillatory schemes for scalar conservation laws

Bojan Popov

A new class of semi-discrete Godunov-type numerical methods for solving nonlinear scalar
conservation laws is introduced. This new class of methods, called here weakly non-oscillatory
(WNO), is a generalization of the classical non-oscillatory schemes. Under certain conditions,
convergence and error estimates of the methods are proved. The main new idea is that we
can violate the entropy inequalities if we have a WNO numerical method and initial data.
Examples of such WNO schemes include modified versions of Min-Mod and UNO.
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Zero diffusion–dispersion limits for self-similar Riemann problems

Christian Rohde

We study the Riemann problem for nonlinear hyperbolic systems of conservation laws reg-
ularized with vanishing diffusion and dispersion terms. We prove the existence of a smooth
self-similar solution to this problem and we derive a uniform estimate on its total variation.
A generalization of the zero-viscosity wave-fan criterium introduced by Dafermos is used.
Our proof relies on work of Tzavaras on purely diffusive regularizations for general (m×m)-
systems.
In the limit, when the diffusion and the dispersion coefficients vanish, the regularized solu-
tion converges in a strong topology to a discontinuous solution of the hyperbolic system of
conservation laws. Our result provides a new existence theorem for the Riemann problem,
in which the characteristic fields need not be genuinely nonlinear and dispersive effects are
taken into account.

This is joint work with P.G. LeFloch.

Stability stabilizes blow-up in quasilinear parabolic equations
with balanced nonlinearity

Steve Schochet

Let L be a self-adjoint uniformly strongly elliptic operator with smooth, time-independent
coeficients. Then the initial-value problem for the degenerate higher-order quasilinear parabolic
PDE ut = −L(|u|m−1u) has a weak solution locally in time. The minimal time of existence
can be estimated from the Lm+1 norm of the initial data. A sufficient condition for the solu-
tion to blow up in finite time is that

∫
(|u|m−1u)L(|u|m−1u) is negative at time zero. When

finite-time blow-up occurs then an appropriate rescaling of the solution tends at the blow-up
time to a solution of L(|u|m−1u) + u = 0. For the case L = (−∂2

x)r − 1 with r > 1, this limit
equation has no non-negative compactly supported solutions.

Relaxed ENO-schemes

Achim Schroll

Numerical experiments with relaxed ENO schemes were presented. Methods of up to
formally 4th order accuracy were applied to the Euler equations of gas dynamics and the
planar MHD system. In a test example involving a Mach 3 shock, a convergence rate of
approximately 1.8 in L1-norm was observed numerically.

Higher order schemes based on relaxation are due to Jin and Xin (1995). Following their
terminology, relaxed schemes are obtained by sending the

relaxation parameter to zero in the well known Jin-Xin-relaxation-scheme. The resulting
methods are related to central schemes by Tadmor et al. They differ however in the choice
of variables which are reconstructed in order to obtain the higher order approximation.
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Boundary layer stability in real vanishing viscosity limit

Denis Serre

This is a joint work with K. Zumbrun (Bloomington, Indiana)
In a previous work, one developed an Evans function machinery for the study of boundary

layer stability. There, the analysis was restricted to strongly parabolic perturbations, that
is to an approximation of the form ut + (F (u))x = ν(B(u)ux)x (ν << 1) with an “elliptic”
matrix B. However, real models, like the Navier-Stokes approximation of the Euler equation
for a gas flow, involve incompletely parabolic perturbations : B is not invertible in general.

We first adapt the Evans function to this realistic framework, assuming that the boundary
is not characteristic, neither for the hyperbolic first order system ut + (F (u))x = 0, nor for
the perturbed system. We then apply it to the various kinds of boundary layers for a gas
flow. We exhibit some examples of unstable boundary layers for a perfect gas, when the the
viscosity dominates heat conductivity and the adiabatic constant γ is larger than two.

Remarks on the Chapman-Enskog Expansion

Marshall Slemrod

This talk discussed the Chapman-Enskog expansion used in approximating solutions of the
Boltzmann equation. The idea of the expansion is to asymptotically represent the macroscopic
fluid equations derived from expanding the solution of f(x,v,t) of the Boltzmann equation.
The problem is truncations of this expansion beyond Navier- Stokes order are unstable. The
talk focusses on a new idea of Jin and Slemrod eliminate this instability and still retain the
usefulness of the approximation.

Critical threshold phenomena in Euler-Poisson equations

Eitan Tadmor

In this work we study the system of Euler-Poisson equations
encountered in various applications of Fluid Dynamics and Plasma physics. We show that

if the initial configuration exceeds an intrinsic critical threshold then the solution of these
equations develop shock discontinuities in a finite time, whereas initial configurations below
critical threshold lead to globally smooth solutions. We also describe the large time behavior
of such solutions, for the various cases of charged and uncharged particles, with or without
viscosity, relaxation, ... in one- and multi-dimensional problems. The phenomena of critical
threshold is shown to characterize these various cases.

Joint work with Shlomo Engelberg (JCT) and Hailiang Liu (UCLA)

16



Well-posedness of systems of conservation laws
near solutions containing two large shocks

Konstantina Trivisa

We consider the Cauchy problem for the strictly hyperbolic system of n conservation laws
in one space dimension. Each characteristic field is assumed to be either linearly degenerate
or genuinely nonlinear.

Major progress in the theory of hyperbolic systems of conservation laws has been the proof
of the stability of solutions to the Cauchy problem with initial data of small total variation
[1], [2], [5].

A significant problem in the field, which remains open, is the establishment of the well-
posedness of solutions with initial data Ū being bounded but possibly large.

As a first step in that direction, we consider as initial data Ū a small BV perturbation of
a fixed Riemann Problem (U l

0, U
r
0 ) whose solution contains two large stable, Lax compressive

shocks traveling with different characteristic speeds Λi and Λj .
We prove:

1 The (global) existence of entropy solution to the Cauchy problem with initial data Ū
suitably close to the Riemann data (U l

0, U
r
0 ).

2 The stability of the solution U under small BV perturbations of its initial data.

The principal tools in the analysis are the wave front tracking algorithm and the notion
of an entropy functional.

Joint work with Marta Lewicka
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A variational approximation scheme for three dimensional elastodynamics
with polyconvex energy

Athanasios Tzavaras

The topic of this talk is the construction of a variational approximation scheme for the
equations of three dimensional elastodynamics with polyconvex stored energy. The assump-
tion of polyconvexity is instrumental in the existence theory for the equations of elastostatics,
and the purpose is to investigate its role for the equations of elastodynamics. The scheme is
motivated by embedding the equations of elastodynamics into a larger system consisting of
the equation of motion and some geometric evolutions of the null Lagrangians (the determi-
nant and cofactor matrix). The scheme decreases the mechanical energy, and its solvability is
reduced to the solution of a constrained convex minimisation problem. We will survey certain
results on stability and convergence of such approximations of the equations of elastodynam-
ics in the 3-d and in the 1-d setting. (joint work with S. Demoulini (Oxford) and D. Stuart
(Cambridge)).

Challenges in (astrophysical) MHD simulations:
transparent boundary conditions

Matthias Wesenberg

Our non–reflecting boundary conditions at artificial boundaries are based on an analyti-
cally exact boundary condition for the hyperbolic equation which describes the evolution of
the pressure perturbation. This equation is derived by a linearization of the MHD equations
about a background atmosphere, thus assuming that the perturbations at the boundary are
sufficiently small and smooth. The boundary condition necessarily includes a non–local term
in time. However, by using a special approximation this non–local term can be evaluated in
a time–stepping manner. Therefore the numerical method stays local in time.

The numerical examples illustrate how strongly the structure of the solution is influenced
by the choice of the boundary conditions. Moreover, we find that — up to a certain extent
— even large perturbations are hardly reflected at the artificial boundaries.

The examples indicate that our transparent boundary conditions give good results and
are very cheap with respect to their computational costs.
(Joint work with Andreas Dedner, Dietmar Kröner, Ivan L. Sofronov)

Admissible boundary conditions and stability of boundary-layers
for a hyperbolic relaxation system

Wen-An Yong

This talk is concerned with boundary conditions for hyperbolic relaxation systems to have
time-asymptotically stable boundary-layers. A new requirement is proposed to characterize
a class of boundary conditions for a typical relaxation system. For the corresponding initial-
boundary value problems, we prove the global (in time) existence and asymptotic decay of
solutions with initial data close to the steady solutions or relaxation boundary-layers.

This is a joint work with Hailiang Liu (UCLA).
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